US009384071B2

a2z United States Patent (10) Patent No.: US 9,384,071 B2
Pope et al. (45) Date of Patent: Jul. 5, 2016
(54) EPOLL OPTIMISATIONS 6,349,035 Bl 2/2002 Koenen
6,438,130 Bl 8/2002 Kagan et al.
(75) Inventors: Steven L. Pope, Costa Mesa, CA (US); g:g%:égg g% 1%%88% (B)?z?;;tﬁl.'
David J. Riddoch, Huntingdon (GB) 6,667,918 B2 12/2003 Leader et al.
6,718,392 Bl 4/2004 Krause
(73) Assignee; SOLARFLARE 6,728,743 B2 4/2004 Shachar
COMMUNICATIONS, INC., Irvine, (Continued)
CA (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this Ep 20521 A2 10/1994
patent is extended or adjusted under 35
US.C. 154(b) by 0 days, WO 0148972 Al 7/2001
(Continued)
(21) Appl. No.: 13/158,176 OTHER PUBLICATIONS
(22) Filed: Jun. 10, 2011 Dec. 10, 2012 Extended Search Report in related application EP 12
16 1064, 8 pp.
(65) Prior Publication Data (Continued)
US 2012/0254893 Al Oct. 4, 2012
Primary Examiner — H S Sough
Assistant Examiner — Carina Yun
Related U.S. Application Data (74) Attorney, Agent, or Firm — Haynes Beffel & Woldfeld
LLP; Warren S. Wolfeld
(60) Provisional application No. 61/470,396, filed on Mar.
31,2011. 67 ABSTRACT
A method for managing /O event notifications in a data
(51) Int.CL processing system, the data processing system comprising a
GOG6F 3/00 (2006.01) plurality of applications and an operating system having a
GO6F 9/54 (2006.01) kernel and an 1/0 event notification mechanism operable to
(52) US.CL maintain a plurality of I/O event notification objects each
CPC oo GOGF 9/545 (2013.01)  handling a set of file descriptors associated with one or more
(58) Field of Classification Search 1/O resources, the method comprising: for each of a plurality
None ofapplication-level configuration calls: intercepting at a user-
See application file for complete search history. level interface a configuration call from an application to the
1/0 event notification mechanism for configuring an I/O event
(56) References Cited notification object; and storing a set of parameters of the
configuration call at a data structure, each set of parameters
U.S. PATENT DOCUMENTS representing an operation on the set of file descriptors
handled by the I/O event notification object; and subse-
g%g’ggg ﬁ léﬁggi g’:;‘sen et al quently, on a predetermined criterion being met: the user-
5046180 A /1999 Koen;yet al level interface causing the plurality of configuration calls to
6:098:1 2 A 8/2000 Ishijima et al. be effected by means of a first system call to the kernel.
6,160,554 A 12/2000 Krause
6,304,945 B1  10/2001 Koenen 23 Claims, 1 Drawing Sheet

200

207— 202 203

%QOB 210 21
A

\
212"\

201

\ 2?9

265 2(‘)6 256

214 213




US 9,384,071 B2

Page 2
(56) References Cited 2004/0210754 A1 10/2004 Barron et al.
2004/0252685 Al  12/2004 Kagan et al.
U.S. PATENT DOCUMENTS 2005/0008223 Al 1/2005 Zeng et al.
2005/0018221 Al 1/2005 Zeng et al.
6,732,211 B1* 5/2004 Goyaletal. ....cco....... 710/261 2005/0038918 Al 2/2005 Hilland et al.
6,735,642 B2 5/2004 Kagan et al. 2005/0038941 Al 2/2005 Chadalapaka et al.
6,768,996 Bl 7/2004 Steffens et al. 2005/0039171 Al 2/2005 Avakian et al.
6,904,534 B2 6/2005 Koenen 2005/0039172 Al 2/2005 Rees et al.
6,950,961 B2 9/2005 Krause et al. 2005/0039187 Al 2/2005 Avakian et al.
6,978,331 Bl  12/2005 Kagan et al. 2005/0066333 Al 3/2005 Krause et al.
7,093,158 B2 8/2006 Barron et al. 2005/0172181 Al 8/2005 Huliehel
7,099,275 B2 8/2006 Sarkinen et al. 2005/0219278 Al  10/2005 Hudson
7,103,626 Bl 9/2006 Recio et al. 2005/0219314 Al  10/2005 Donovan et al.
7,103,744 B2 9/2006 Garcia et al. 2005/0231751 Al  10/2005 Wu et al.
7,136,397 B2 11/2006 Sharma 2006/0026443 Al 2/2006 McMabhan et al.
7,143,412 B2 11/2006 Koenen 2006/0045098 Al 3/2006 Krause
7,149,227 B2 12/2006 Stoler et al. 2006/0126619 Al 6/2006 Teisberg et al.
7,151,744 B2 12/2006 Sarkinen et al. 2006/0165074 Al 7/2006 Modi et al.
7,216,225 B2 5/2007 Haviv et al. 2006/0193318 Al 8/2006 Narasimhan et al.
7,240,350 Bl 7/2007 Eberhard et al. 2006/0228637 Al  10/2006 Jackson et al.
7,245,627 B2 7/2007 Goldenberg et al. 2006/0248191 Al  11/2006 Hudson et al.
7,254,237 Bl 8/2007 Jacobson et al. 2007/0188351 Al 8/2007 Brown et al.
7,285,996 B2 10/2007 Fiedler 2007/0199045 Al 8/2007 Kimeetal. ....ccccovvvennrnn 726/2
7.316,017 Bl 1/2008 Jacobson et al. 2007/0220183 Al 9/2007 Kagan et al.
7,346,702 B2 3/2008 Haviv 2008/0024586 Al 1/2008 Barron
7,386,619 Bl 6/2008 Jacobson et al. 2008/0109526 Al 5/2008 Subramanian et al.
7,403,535 B2 7/2008 Modi et al. 2008/0115216 Al 5/2008 Barron et al.
7,404,190 B2 7/2008 Krause et al. 2008/0115217 Al 5/2008 Barron et al.
7,502,826 B2 3/2009 Barron et al. 2008/0126509 Al 5/2008 Subramanian et al.
7,509,355 B2 3/2009 Hanes ef al. 2008/0135774 Al 6/2008 Hugers
7,518,164 B2 4/2009 Smelloy et al. 2008/0147828 Al 6/2008 Enstone et al.
7,551,614 B2 6/2009 Teisberg et al. 2008/0148400 Al 6/2008 Barron et al.
7,554,993 B2 6/2009 Modi et al. 2008/0177890 Al 7/2008 Krause et al.
7.573,967 B2 8/2009 Fiedler 2008/0244060 Al  10/2008 Cripe et al.
7,580,415 B2 8/2009 Hudson et al. 2008/0250400 ALl* 10/2008 Vertes ........cccoovvvvvuernenne 717/158
7,580,495 B2 8/2009 Fiedler 2008/0301406 Al  12/2008 Jacobson et al.
7,617,376 B2 11/2009 Chadalapaka et al. 2008/0304519 Al  12/2008 Koenen et al.
7,631,106 B2 12/2009 Goldenberg et al. 2009/0165003 Al 6/2009 Jacobson et al.
7,650,386 B2 1/2010 McMahan et al. 2009/0201926 Al 8/2009 Kagan et al.
7,653,754 B2 1/2010 Kagan et al. 2009/0213856 Al 8/2009 Paatela et al.
7,688,853 B2 3/2010 Santiago et al. 2009/0268612 Al  10/2009 Felderman et al.
7,757,232 B2 7/2010 Hilland et al. 2009/0302923 Al  12/2009 Smeloy et al.
7,801,027 B2 9/2010 Kagan et al. 2010/0088437 Al 4/2010 Zahavi
7,802,071 B2 9/2010 Oved 2010/0138840 Al 6/2010 Kagan et al.
7,813,460 B2 10/2010 Fiedler 2010/0169880 Al 7/2010 Haviv et al.
7,827,442 B2 11/2010 Sharma et al. 2010/0188140 Al 7/2010 Smeloy
7,835,375 B2 11/2010 Sarkinen et al. 2010/0189206 Al 7/2010 Kagan
7,848,322 B2 12/2010 Oved 2010/0265849 Al  10/2010 Harel
7,856,488 B2  12/2010 Cripe et al. 2010/0274876 Al  10/2010 Kagan et al.
7,864,787 B2 1/2011 Oved 2011/0004457 Al 1/2011 Haviv et al.
7,904,576 B2 3/2011 Krause et al. 2011/0010557 Al 1/2011 Kagan et al.
7,921,178 B2 4/2011 Haviv 2011/0029669 Al 2/2011 Chuang et al.
7,929,539 B2 4/2011 Kagan etal. 2011/0029847 Al 2/2011 Goldenberg et al.
7,930,437 B2 4/2011 Kagan et al. 2011/0044344 Al 2/2011 Hudson et al.
7,934,959 B2 5/2011 Rephaeli et al. 2011/0058571 Al 3/2011 Bloch et al.
7,978,606 B2 7/2011 Buskirk et al. 2011/0083064 Al 4/2011 Kagan et al.
8,000,336 B2 8/2011 Harel 2011/0096668 Al 4/2011 Bloch et al.
2002/0059052 Al 5/2002 Bloch et al. 2011/0113083 Al 52011 Shahar
2002/0112139 Al 8/2002 Krause et al. 2011/0116512 Al 5/2011 Crupnicoff et al.
2002/0129293 Al 9/2002 Hutton et al. 2011/0119673 Al 5/2011 Bloch et al.
2002/0140985 Al  10/2002 Hudson 2011/0173352 Al 7/2011 Sela et al.
2002/0156784 Al  10/2002 Hanes et al.
2003/0007165 Al 1/2003 Hudson FOREIGN PATENT DOCUMENTS
2003/0058459 Al 3/2003 Wu et al.
2003/0063299 Al 4/2003 Cowan et al.
2003/0065856 Al 4/2003 Kagan et al. wg 2002%3;2;5 :5 18%88%
2003/0191786 Al  10/2003 Matson et al. WO 2010020907 A2 2/2010
2004/0071250 Al 4/2004 Bunton et al. WO 2011053305 Al 52011
2004/0141642 Al 7/2004 Zeng et al. WO 2011053330 Al 52011
2004/0177342 Al* 9/2004 Worley, Jr. ....ccovnnen 717/121
2004/0190533 Al 9/2004 Modi et al.
2004/0190538 A1 9/2004 Bunton et al. OTHER PUBLICATIONS
2004/0190557 Al 9/2004 Barron
2004/0193734 Al 9/2004 Barron et al. Ouyang X et al., “Fast Checkpointing by Write Aggregation with
2004/0193825 Al 9/2004 Garcia et al. Dynamic Buffer and Interleaving on Multicore Architecture,” Intl.



US 9,384,071 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Conf. on High Performance Computing, Kochi, India, 2009, IEEE
pp. 99-108.

Ouyang X et al., “Accelerating Checkpoint Operation by Node-Level
Write Aggregation on Multicore Systems,” Intl. Conf. on Parallel
Processing, Vienna, Austria, 2009, pp. 34-41.

Linux programmer’s manual, Epoll(7) Feb. 2009, “Epoll—I/O event
notification facility,” XP055046179, 4 pp.

Gordon E. Moore; Electronics, vol. 38, No. 8, pp. 114-117, 1965,
Apr. 19, 1965.

Jack B. Dennis and Earl C. Van Horn; Communications of the ACM,
vol. 9, No. 3, pp. 143-155, 1966, Mar. 1966.

Marvin Zelkowitz; Communications of the ACM, vol. 14, No. 6, p.
417-418, 1971, Jun. 1971.

J. Carver Hill; Communications of the ACM, vol. 16, No. 6, p.
350-351, 1973, Jun. 1973.

F.F. Kuo; ACM Computer Communication Review, vol. 4 No. 1,
1974, Jan. 1974.

Vinton Cerf, Robert Kahn; IEEE Transactions on Communications,
vol. COM-22, No. 5, pp. 637-648, 1974, May 1974.

V. Ceti, et al.; ACM Computer Communication Review, vol. 6 No. 1,
p. 1-18, 1976, Jan. 1976.

Robert M. Metcalfe and David R. Boggs; Communications of the
ACM, vol. 19, Issue 7, pp. 395-404, 1976, Jul. 1976.

P. Kermani and L. Kleinrock; Computer Networks, vol. 3, No. 4, pp.
267-286, 1979, Sep. 1979.

John M. McQuillan, et al.; Proceedings of the 6th Data Communica-
tions Symposium, p. 63, 1979, Nov. 1979.

Andrew D. Birrell, et al.; Communications of the ACM, vol. 25, Issue
4, pp. 260-274, 1982, Apr. 1982.

Ian M. Leslie, et al.; ACM Computer Communication Review, vol.
14, No. 2, pp. 2-9, 1984, Jun. 1984.

John Nagle; ACM Computer Communication Review, vol. 14, No. 4,
p. 11-17, 1984, Oct. 1984.

Robert M. Brandriff, et al.; ACM Computer Communication Review,
vol. 15, No. 4, 1985, Sep. 1985.

C. Kline; ACM Computer Communication Review, vol. 17, No. 5,
1987, Aug. 1987.

Christopher A. Kent, Jeffrey C. Mogul; ACM Computer Communi-
cation Review, vol. 17, No. 5, pp. 390-401, 1987, Oct. 1987.

Gary S. Delp, et al.; ACM Computer Communication Review, vol.
18, No. 4, p. 165-174, 1988, Aug. 1988.

David R. Boggs, et al.; ACM Computer Communication Review, vol.
18, No. 4, p. 222-234, 1988, Aug. 1988.

H. Kanakia and D. Cheriton; ACM Computer Communication
Review, vol. 18, No. 4, p. 175-187, 1988, Aug. 1988.

V. Jacobson; ACM Computer Communication Review, vol. 18,No.4,
p-314-329, 1988, Aug. 1988.

David D. Clark; ACM Computer Communication Review, vol. 18,
No. 4, pp. 106-114, 1988, Aug. 1988.

Paul V. Mockapetris, Kevin J. Dunlap; ACM Computer Communi-
cation Review, vol. 18, No. 4, pp. 123-133, 1988, Aug. 1988.
Margaret L. Simmons and Harvey J. Wasserman; Proceedings of the
1988 ACM/IEEE conference on Supercomputing, p. 288-295,
Orlando, Florida, Nov. 12, 1988.

David A. Borman; ACM Computer Communication Review, vol. 19,
No. 2, p. 11-15, 1989, Apr. 1989.

R. Braden, et al.; ACM Computer Communication Review, vol. 19,
No. 2, p. 86-94, 1989, Apr. 1989.

David D. Clark, et al.; IEEE Communications Magazine, vol. 27, No.
6, pp. 23-29, 1989, Jun. 1989.

David R. Cheriton; ACM Computer Communication Review, vol. 19,
No. 4, p. 158-169, 1989, Sep. 1989.

Derek Robert McAuley; PhD Thesis, University of Cambridge, 1989,
Sep. 1989.

Craig Partridge; ACM Computer Communication Review, vol. 20,
No. 1, p. 44-53, 1990, Jan. 1990.

D.D.Clark and D. L. Tennenhouse; ACM Computer Communication
Review, vol. 20, No. 4, pp. 200-208, 1990, Sep. 1990.

Eric C. Cooper, et al.; ACM Computer Communication Review, vol.
20, No. 4, p. 135-144, 1990, Sep. 1990.

Bruce S. Davie; ACM Computer Communication Review, vol. 21,
No. 4, 1991, Sep. 1991.

C. Brendan S. Traw, et al.; ACM Computer Communication Review,
vol. 21, No. 4, p. 317-325, 1991, Sep. 1991.

Ian Leslie and Derek R. McAuley; ACM Computer Communication
Review, vol. 21, No. 4, p. 327, 1991, Sep. 1991.

Mark Hayter, Derek McAuley; ACM Operating Systems Review, vol.
25, Issue 4, p. 14-21, 1991, Oct. 1991.

Gregory G. Finn; ACM Computer Communication Review, vol. 21,
No. 5, p. 18-29, 1991, Oct. 1991.

Greg Chesson; Proceedings of the Third International Conference on
High Speed Networking, 1991, Nov. 1991.

Michael J. Dixon; University of Cambridge Computer Laboratory
Technical Report No. 245, Jan. 1992.

Danny Cohen, Gregory Finn, Robert Felderman, Annette DeSchon;
Made available by authors, Jan. 10, 1992.

Gene Tsudik; ACM Computer Communication Review, vol. 22, No.
S, pp- 29-38, 1992, Oct. 1992.

Peter Steenkiste; ACM Computer Communication Review, vol. 22,
No. 4, 1992, Oct. 1992.

Paul E. McKenney and Ken F. Dove; ACM Computer Communica-
tion Review, vol. 22, No. 4, 1992, Oct. 1992.

Erich Ruetsche and Matthias Kaiserswerth; Proceedings of the IFIP
TC6/WG6.4 Fourth International Conference on High Performance
Networking IV, Dec. 14, 1992.

C. Traw and J. Smith; IEEE Journal on Selected Areas in Communi-
cations, pp. 240-253, 1993, Feb. 1993.

E. Ruetsche; ACM Computer Communication Review, vol. 23, No. 3,
1993, Jul. 1993.

Jonathan M. Smith and C. Brendan S. Traw; IEEE Network, vol. 7,
Issue 4, pp. 44-52, 1993, Jul. 1993.

Jeffrey R. Michel; MSci Thesis, University of Virginia, 1993, Aug.
1993.

Mark David Hayter, PhD Thesis, University of Cambridge, 1993,
Sep. 1993.

Jonathan Kay and Joseph Pasquale; ACM Computer Communication
Review, vol. 23, No. 4, pp. 259-268, 1993, Oct. 1993.

W. E. Leland, et al.; ACM Computer Communication Review, vol.
23, No. 4, p. 85-95, 1993, Oct. 1993.

C. A. Thekkath, et al.; ACM Computer Communication Review, vol.
23, No. 4, 1993, Oct. 1993.

Raj K. Singh, et al.; Proceedings of the 1993 ACM/IEEE conference
on Supercomputing, p. 452-461, Portland, Oregon, Nov. 15, 1993.
Peter Druschel and Larry L. Peterson; ACM Operating Systems
Review, vol. 27, Issue 5, p. 189-202, 1993, Dec. 1993.

Matthias Kaiserswerth; IEEE/ACM Transactions on Networking,
vol. 1, No. 6, p. 650-663, 1993, Dec. 1993.

Chris Maeda, Brian Bershad; ACM Operating Systems Review, vol.
27, Issue 5, p. 244-255, 1993, Dec. 1993.

Greg Regnier, et al.; IEEE Micro, vol. 24, No. 1, p. 24-31, 1994, Jan.
1994,

J. Vis; ACM Computer Communication Review, vol. 24, No. 1, pp.
7-11, 1994, Jan. 1994.

Danny Cohen, Gregory Finn, Robert Felderman, Annette DeSchon;
Journal of High Speed Networks, Jan. 3, 1994.

Gregory G. Finn and Paul Mockapetris; Proceedings of InterOp *94,
Las Vegas, Nevada, May 1994.

Stuart Wray, et al.; Proceedings of the International Conference on
Multimedia Computing and Systems, p. 265-273, Boston, 1994, May
1994,

Various forum members; Message-Passing Interface Forum, Univer-
sity of Tennessee, Knoxville, 1994, May 5, 1994.

Raj K. Singh, et al.; ACM Computer Communication Review, vol. 24,
No. 3, p. 8-17, 1994, Jul. 1994.

P. Druschel, et al.; ACM Computer Communication Review, vol. 24,
No. 4, 1994, Oct. 1994.

Sally Floyd; ACM Computer Communication Review, vol. 24, No. 5,
p- 8-23, 1994, Oct. 1994.

A. Edwards, et al.; ACM Computer Communication Review, vol. 24,
No. 4, pp. 14-23, 1994, Oct. 1994.



US 9,384,071 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

L. S. Brakmo, et al.; ACM Computer Communication Review, vol.
24, No. 4, p. 24-35, 1994, Oct. 1994.

A.Romanow and S. Floyd; ACM Computer Communication Review,
vol. 24, No. 4, p. 79-88, 1994, Oct. 1994.

R. J. Black, L. Leslie, and D. McAuley; ACM Computer Communi-
cation Review, vol. 24, No. 4, p. 158-167, 1994, Oct. 1994.

Babak Falsafi, et al.; Proceedings of the 1994 conference on
Supercomputing, pp. 380-389, Washington D.C., Nov. 14, 1994.
Mengjou Lin, et al.; Proceedings of the 1994 conference on
Supercomputing, Washington D.C., Nov. 14, 1994.

Nanette J. Boden, et al.; Draft of paper published in IEEE Micro, vol.
15, No. 1, pp. 29-36, 1995, Nov. 16, 1994.

Thomas Sterling, et al.; Proceedings of the 24th International Con-
ference on Parallel Processing, pp. 11-14, Aug. 1995.

K. Kleinpaste, P. Steenkiste, B. Zill; ACM Computer Communica-
tion Review, vol. 25, No. 4, p. 87-98, 1995, Oct. 1995.

C. Partridge, J. Hughes, J. Stone; ACM Computer Communication
Review, vol. 25, No. 4, p. 68-76, 1995, Oct. 1995.

A. Edwards, S. Muir; ACM Computer Communication Review, vol.
25, No. 4, 1995, Oct. 1995.

J. C. Mogul; ACM Computer Communication Review, vol. 25, No. 4,
1995, Oct. 1995.

Thorsten von Eicken, et al.; ACM Operating Systems Review, vol. 29,
Issue 5, p. 109-126, 1995, Dec. 1995.

D. L. Tennenhouse, D. J. Wetherall; ACM Computer Communication
Review, vol. 26, No. 2, pp. 15-20, 1996, Apr. 1996.

Paul Ronald Barham; PhD Thesis, University of Cambridge, 1996,
Jul. 1996.

Chi-Chao Chang, et al.; Proceedings of the 1996 ACM/IEEE confer-
ence on Supercomputing, Pittsburgh, Nov. 17, 1996.

Joe Touch, et al.; “Atomic-2” slides, Gigabit Networking Workshop
’97 Meeting, Kobe, Japan, Apr. 1997, 10pp.

Joe Touch, et al.; “Host-based Routing Using Peer DMA,” Gigabit
Networking Workshop *97 Meeting, Kobe, Japan, Apr. 1997, 2pp.
O. Angin, et al.; ACM Computer Communication Review, vol. 27,
No. 3, pp. 100-117, 1997, Jul. 1997.

Charles P. Thacker and Lawrence C. Stewart; ACM Operating Sys-
tems Review, vol. 21, Issue 4, p. 164-172, 1987, Oct. 1997.

Ed Anderson, et al.; Proceedings of the 1997 ACM/IEEE conference
on Supercomputing, p. 1-17, San Jose, California, Nov. 16, 1997.
Harvey J. Wassermann, et al.; Proceedings of the 1997 ACM/IEEE
conference on Supercomputing, p. 1-11, San Jose, California, Nov.
16, 1997.

Philip Buonadonna, et al.; Proceedings of the 1998 ACM/IEEE con-
ference on Supercomputing, p. 1-15, Orlando, Florida, Nov. 7, 1998.
Parry Husbands and James C. Hoe; Proceedings of the 1998 ACM/
IEEE conference on Supercomputing, p. 1-15, Orlando, Florida, Nov.
7, 1998.

Michael S. Warren, et al.; Proceedings of the 1998 ACM/IEEE con-
ference on Supercomputing, Orlando, Florida, Nov. 7, 1998.

John Salmon, et al.; Proceedings of the 1998 ACM/IEEE conference
on Supercomputing, Orlando, Florida, Nov. 7, 1998.

Boon S. Ang, et al.; Proceedings of the 1998 ACM/IEEE conference
on Supercomputing, Orlando, Florida, Nov. 7, 1998.

S. L. Pope, et al.; Parallel and Distributed Computing and Networks,
Brisbane, Australia, 1998, Dec. 1998.

M. de Vivo, et al.; ACM Computer Communication Review, vol. 29,
No. 1, pp. 81-85, 1999, Jan. 1999.

M. Allman; ACM Computer Communication Review, vol. 29, No. 3,
1999, Jul. 1999.

Steve Muir and Jonathan Smith; Technical Report MS-CIS-00-04,
University of Pennsylvania, 2000, Jan. 2000.

Patrick Crowley, et al.; Proceedings of the 14th international confer-
ence on Supercomputing, pp. 54-65, Santa Fe, New Mexico, May 8,
2000.

Jonathan Stone, Craig Partridge; ACM Computer Communication
Review, vol. 30, No. 4, pp. 309-319, 2000, Oct. 2000.

W. Feng and P. Tinnakornsrisuphap; Proceedings of the 2000 ACM/
IEEE conference on Supercomputing, Dallas, Texas, Nov. 4, 2000.

Jenwei Hsieh, et al.; Proceedings of the 2000 ACM/IEEE conference
on Supercomputing, Dallas, Texas, Nov. 4, 2000.

Ian Pratt and Keir Fraser; Proceedings of IEEE Infocom 2001, pp.
67-76, Apr. 22, 2001.

Regnier G., “Protocol Onload vs. Offload,” 14th Symposium on High
Performance Interconnects, Aug. 23, 2006, 1pp.

Montry G., OpenFabrics Alliance presentation slides, 14th Sympo-
sium on High Performance Interconnects, Aug. 23, 2006, 8pp.

Bilic Hrvoye, et al.; Article in Proceedings of the 9th Symposium on
High Performance Interconnects, “Deferred Segmentation for Wire-
Speed Transmission of Large TCP Frames over Standard GbE Net-
works,” Aug. 22, 2001, Spp.

Bilic Hrvoye, et al.; Presentation slides from 9th Symposium on High
Performance Interconnects, “Deferred Segmentation for Wire-Speed
Transmission of Large TCP Frames over Standard GbE Networks,”
Aug. 22, 2001, 9pp.

Bruce Lowekamp, et al.; ACM Computer Communication Review,
vol. 31, No. 4, 2001, Oct. 2001.

Piyush Shivam, et al.; Proceedings of the 2001 ACM/IEEE confer-
ence on Supercomputing, pp. 57, Denver, Nov. 10, 2001.

Robert Ross, et al.; Proceedings of the 2001 ACM/IEEE conference
on Supercomputing, pp. 11, Denver, Nov. 10, 2001.

E. Blanton and M. Allman; ACM Computer Communication Review,
vol. 32, No. 1, 2002, Jan. 2002.

Murali Rangarajan, et al.; Technical Report DCR-TR-481, Computer
Science Department, Rutgers University, 2002. , Mar. 2002.

Jon Crowcroft, Derek McAuley; ACM Computer Communication
Review, vol. 32, No. 5, 2002, Nov. 2002.

Charles Kalmanek; ACM Computer Communication Review, vol.
32, No. 5, pp. 13-19, 2002, Nov. 2002.

Jonathan Smith; ACM Computer Communication Review, vol. 32,
No. 5, pp. 29-37, 2002, Nov. 2002.

NR Adiga, et al.; Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, pp. 1-22, Baltimore, Nov. 16, 2002.

Steven J. Sistare, Christopher J. Jackson; Proceedings of the 2002
ACM/IEEE conference on Supercomputing, p. 1-15, Baltimore, Nov.
16, 2002.

R. Bush, D. Meyer; IETF Network Working Group, Request for
Comments: 3439, Dec. 2002.

Pasi Sarolahti, et al.; ACM Computer Communication Review, vol.
33, No. 2, 2003, Apr. 2003.

Tom Kelly; ACM Computer Communication Review, vol. 33, No. 2,
pp. 83-91, 2003, Apr. 2003.

Jeffrey C. Mogul; Proceedings of HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems, pp. 25-30, May 18, 2003.

Derek McAuley, Rolf Neugebauer; Proceedings of the ACM
SIGCOMM 2003 Workshops, Aug. 2003.

Justin Hurwitz, Wu-chun Feng; Proceedings of the 11th Symposium
on High Performance Interconnects, Aug. 20, 2003.

Vinay Aggarwal, et al.; ACM Computer Communication Review,
vol. 33, No. 5, 2003, Oct. 2003.

Wu-chun Feng, et al.; Proceedings of the 2003 ACM/IEEE confer-
ence on Supercomputing, Phoenix, Arizona, Nov. 15, 2003.

Jiuxing Liu, et al.; Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, Phoenix, Arizona, Nov. 15, 2003.

Srihari Makineni and Ravi Iyer; Proceedings of the 10th International
Symposium on High Performance Computer Architecture, pp. 152,
Feb. 14, 2004.

Cheng Jin, etal.; Proceedings of IEEE Infocom 2004, pp. 1246-1259,
Mar. 7, 2004.

Andy Currid; ACM Queue, vol. 2, No. 3, 2004, May 1, 2004.

Greg Regnier, et al.; Computer, IEEE Computer Society, vol. 37, No.
11, pp. 48-58, 2004, Nov. 2004.

Gregory L. Chesson; United States District Court, Northern District
California, San Francisco Division, Feb. 4, 2005.

Edward D. Lazowska, David A. Patterson; ACM Computer Commu-
nication Review, vol. 35, No. 2, 2005, Jul. 2005.

W. Feng, et al.; Proceedings of the 13th Symposium on High Perfor-
mance Interconnects, Aug. 17, 2005.

B. Leslie, et al.; J. Comput. Sci. & Technol., vol. 20, Sep. 2005.

P. Balaji, et al.; Proceedings of the IEEE International Conference on
Cluster Computing, 2005, Sep. 2005.



US 9,384,071 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Humaira Kamal, et al.; Proceedings of the 2005 ACM/IEEE confer-
ence on Supercomputing, Seattle, p. 30, Washington, Nov. 12, 2005.
Sumitha Bhandarkar, et al.; ACM Computer Communication
Review, vol. 36, No. 1, pp. 41-50, 2006, Jan. 2006.

H. K. Jerry Chu; Proceedings of the USENIX Annual Technical
Conference 1996, Jan. 1996.

Ken Calvert; ACM Computer Communication Review, vol. 36, No. 2,
pp- 27-30, 2006, Apr. 2006.

Jon Crowcroft; ACM Computer Communication Review, vol. 36, No.
2, pp. 51-52, 2006, Apr. 2006.

Greg Minshall, et al.; ACM Computer Communication Review, vol.
36, No. 3, pp. 79-92, 2006, Jul. 2006.

David Wetherall; ACM Computer Communication Review, vol. 36,
No. 3, pp. 77-78, 2006, Jul. 2006.

Patrick Geoffray, HPCWire article: http://www.hpcwire.com/fea-
tures/17886984 html, Aug. 18, 2006.

Geoffray P., “Protocol off-loading vs on-loading in high-perfor-
mance networks,” 14th Symposium on High Performance Intercon-
nects, Aug. 23, 2006, 5pp.

Jose Carlos Sancho, et al.; Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, Tampa, Florida, Nov. 11, 2006.
Sayantan Sur, et al.; Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, Tampa, Florida, Nov. 11, 2006.

Steven Pope, David Riddoch; ACM Computer Communication
Review, vol. 37, No. 2, pp. 89-92, 2007, Mar. 19, 2007.

Kieran Mansley, et al.; Euro-Par Conference 2007, pp. 224-233,
Rennes, France, Aug. 28, 2007.

M. Kaiserswerth; IEEE/ACM Transactions in Networking vol. 1,
Issue 6, pp. 650-663, 1993, Dec. 1993.

Danny Cohen, et al.; ACM Computer Communication Review, vol.
23, No. 4, p. 32-44, 1993, Jul. 1993.

J. Evans and T. Buller; IEEE TCGN Gigabit Networking Workshop,
2001, Apr. 22, 2001.

M.V. Wilkes and R M. Needham; ACM SIGOPS Operating Systems
Review, vol. 14, Issue 1, pp. 21-29, 1980, Jan. 1980.

Dickman, L., “Protocol OffLoading vs OnlLoading in High Perfor-
mance Networks,” 14th Symposium on High Performance Intercon-
nects, Aug. 23, 2006, 8pp.

Mogul J., “TCP offload is a dumb idea whose time has come,”
USENIX Assoc., Proceedings of HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems, May 2003, pp. 24-30.

Petrini F., “Protocol Off-loading vs On-loading in High-Performance
Networks,” 14th Symposium on High Performance Interconnects,
Aug. 23, 2006, 4pp.

Goldt et al., “The Linux Programmer’s Guide,” Linux, v 0.4, Mar.
1995, 131 pages.

Hrozek and Schneide, “What is Preloading?”, available at https://
blog.cryptomilk.org/2014/07/2 1/what-is-preloading/, 1  page,
accessed Apr. 10, 2015.

Hallinan, Embedded Linux Primer: A Practical Real-World
Approach, Chapter 14: Kernel Debugging Techniques, available at
<http://www.linuxjournal.com/article/9252> (2006), 5 pages,
accessed Apr. 10, 2015.

Oracle Corporation and Oracle U.S.A., Inc. v. Parallel Newtorks,
LLP, Civ No. 06-414-SLR, Memorandum Order dated Dec. 4, 2008,
4 pages.

Superspeed Software, Inc. versus Oracle Corp., Civil Action No.
H-04-3409, Order dated Dec. 16, 2005, 32 pages.

“Intercept” definition, The American Heritage Dictionary of the
English Language, Houghton Mifflin Company, Boston, MA and
New York, NY, 1992, 3 pages.

* cited by examiner



U.S. Patent

107~

207 —

Jul. 5, 2016 US 9,384,071 B2
100
e
102 103 103
! [ [
AN
) P
!
YYVY
104
105 108 106
FIG. 1
(PRIOR ART)
200
e
202 203 203
! [

\\\\\ o9 201
!
y

204
)
(
1] égé %
(.  ( 214 213
205 208 206




US 9,384,071 B2

1
EPOLL OPTIMISATIONS

BACKGROUND OF THE INVENTION

This invention relates to methods for managing 1/O event
notifications in a data processing system and to methods for
minimising the latency and jitter associated with the manage-
ment of I/O event notifications.

Typically, input and output (I/O) operations in an operating
system will be handled using file descriptors, which are
abstract indicators that can provide a reference to the files,
sockets, FIFOs, block or character devices, or other 1/O
resources maintained by the operating system. Processes run-
ning on the operating system use the file descriptors in calls to
the operating system in order to reference the files, sockets
etc. of the system, with the operating system maintaining a
kernel-resident data structure containing the correspondence
between each file descriptor and resource (file, socket etc.) of
the system. This allows, for example, an application to read
from a particular file by means of a read( ) system call to the
operating system that includes the file descriptor associated
with that file. The operating system looks up the file corre-
sponding to the provided file descriptor and, if the necessary
permissions are satisfied, performs the requested read opera-
tion on behalf of the application.

An operating system generally provides several mecha-
nisms for managing the file descriptors that are used for 1/0.
For example, in Linux, the select, poll and epoll mechanisms
are provided as part of the system call API, each of which
allows a process to monitor sets of file descriptors for an event
such as a file descriptor becoming ready to perform /O, or
data being updated at the memory location identified by the
file descriptor. The sets of file descriptors that an application
wishes to monitor are typically held in objects that can be
managed through the mechanisms provided by the operating
system, with each object holding a set of file descriptors
relating to the application. For example, in Linux an applica-
tion can establish an epoll instance for handling a set of file
descriptors that the application wishes to monitor, the epoll
instance being managed by means of epoll_create( )
epoll_ctl( ) and epoll_wait( ) system calls provided by the
epoll mechanism.

Each of the mechanisms will typically have different per-
formance characteristics. For example, the epoll_wait( ) sys-
tem call is more efficient than the equivalent select( ) and
poll() calls when the set of file descriptors is large. However,
the epoll mechanism is relatively inefficient when the set of
monitored file descriptors and 1/O events changes because
this additionally requires calls to epoll_ctl( ). Since the calls
to a kernel mechanism such as epoll are system calls, they
require a context switch from the application making the call
into the kernel and are therefore relatively expensive in terms
of processing overhead. Each context switch consumes pro-
cessing resources and can introduce unwanted latency into
the system. Epoll is typically used as follows:

/* Create an epoll set. */

epoll__set = epoll__create(...);

/* Add file descriptor(s) to the set. */

epoll__ctl(epoll__set, EPOLL_ CTL__ADD, fd, event);

/* Wait for file descriptors in set to become ready. */

n__events = epoll__wait(epoll__set, events, maxevents, timeout);
/* Use the file descriptors that are ready. */

for(i = 0; i <n; ++i)...

In contrast, with the select or poll mechanisms, the set of
file descriptors to monitor is supplied in a single select( ) or

10

15

20

25

30

35

40

45

50

55

60

65

2

poll( ) call that also waits for the file descriptors to become
ready. For example, the above epoll use can be achieved as
follows with poll:

/* Add file descriptor(s) to a set. */

pfds[n__fds].fd = fd;

pfds[n__fds].events = POLLIN;

++n__fds;

/* Wait for file descriptors in set to become ready. */
n__events = poll(pfds, n__fds, timeout);

/* Use the file descriptors that are ready. */
for(i=0;1i<n;++i)..

Thus, the poll and select mechanisms tend to be more
efficient when the set of file descriptors to be monitored
changes frequently over time, and the epoll mechanism tends
to be more efficient when the set of file descriptors is rela-
tively large and remains relatively static.

Another problem with conventional I/O event notification
mechanisms is that they can introduce significant latency and
jitter into the processing performed by the threads of an
application due to the blocking of 1/O event notification
threads that are waiting for events at the descriptors moni-
tored by the application. This is of particular concern in data
processing systems that have user-level network stacks oper-
ating over high bandwidth network interface devices. In order
to provide a low latency, high speed data path between a
user-level stack and its network interface device, it is gener-
ally important to minimise the latency and jitter experienced
by the stack due to kernel processes.

There is therefore a need for an I/O event notification
mechanism that can be efficiently used with large sets of file
descriptors when the set of file descriptors changes fre-
quently. There is also a need for improved mechanisms for
invoking system calls so as to minimise the latency and jitter
associated with the management of 1/O event notifications.

SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is
provided a method for managing I/O event notifications in a
data processing system, the data processing system compris-
ing a plurality of applications and an operating system having
akernel and an 1/O event notification mechanism operable to
maintain a plurality of I/O event notification objects each
handling a set of file descriptors associated with one or more
1/O resources, the method comprising: for each of a plurality
ofapplication-level configuration calls: intercepting at a user-
level interface a configuration call from an application to the
1/0 event notification mechanism for configuring an I/O event
notification object; and storing a set of parameters of the
configuration call at a data structure, each set of parameters
representing an operation on the set of file descriptors
handled by the I/O event notification object; and subse-
quently, on a predetermined criterion being met: the user-
level interface causing the plurality of configuration calls to
be effected by means of a first system call to the kernel.

Preferably the method further comprises, subsequent to
each intercepting step, returning processing to the application
that made the respective configuration call. Preferably the
intercepting and storing steps are performed without invoking
any system calls.

Suitably the I/O event notification mechanism is config-
ured such that each file descriptor of an 1/O event notification
object is individually configurable by means of a configura-
tion call from the application to the /O event notification
mechanism.



US 9,384,071 B2

3

Preferably the step of causing the plurality of configuration
calls to be effected comprises: the user-level interface making
the first system call to the kernel so as to pass the data struc-
ture to a kernel library; and the kernel library invoking a
configuration routine of the I/O event notification mechanism
for each set of parameters stored in the data structure so as to
configure the I/O event notification object in accordance with
the configuration calls. The data structure could be passed to
the kernel library by one of: passing a reference to the data
structure, passing a copy of at least part of the data structure,
and passing a representation of the data structure into the
kernel context. Suitably the /O event notification mechanism
is epoll and the configuration routine is epoll_ctl().

Each operation on the set of file descriptors held by the [/O
event notification object could be an operation to add a file
descriptor to the set, modify an event type to be monitored by
the I/O event notification object in respect of a file descriptor
of the set, or delete a file descriptor from the set of file
descriptors.

Preferably the method further comprises, prior to the
invoking step: combining into a single operation those opera-
tions represented by the sets of parameters stored at the data
structure that are associated with the same file descriptor of
the I/O event notification object; and replacing the operations
represented by those sets of parameters with the single opera-
tion in the invoking step. The single operation could be do
nothing ifthe operations represented by the sets of parameters
stored at the data structure cancel each other out. Preferably
the combining step is performed by the user-level interface or
the kernel library.

Preferably the method further comprises intercepting at the
user-level interface a wait call from the application to the /O
event notification mechanism for causing the /O event noti-
fication object to wait for an event associated with one or
more of its file descriptors, and the predetermined criterion
being the reception of a wait call from the application at the
user-level interface. Preferably the predetermined criterion is
additionally met if no wait call is received at the user-level
interface but one of the following occurs: a predetermined
time period expires; or the storage space required at the data
structure for storing the sets of parameters representing
operations to be performed on the set of file descriptors
handled by the /O event notification object exceeds a prede-
termined size.

Preferably the method further comprises, subsequent to the
step of causing the plurality of configuration calls to be
effected, the user-level interface causing the I/O event notifi-
cation object to wait for an event associated with one or more
of the file descriptors of the /O event notification object by
means of a second system call to the kernel. Preferably the
second system call is to the kernel library and the step of
causing the I/O event notification object to wait for an event
comprises invoking a wait routine of the /O event notification
mechanism. Suitably the /O event notification mechanism is
epoll and the wait routine is epoll_wait( ) or epoll_pwait( ).
Preferably the first and second system calls are made by
means of a single unified system call from the user-level
interface to the kernel library.

Suitably the operating system comprises a plurality of /O
event notification objects and the user-level interface relates
to a single I/O event notification object. Suitably the I/O event
notification object handles a set of file descriptors corre-
sponding to a network interface device. The file descriptors
could correspond to receive or transmit buffers. The user-
level interface could be provided at a user-level network
stack.

10

15

20

25

30

35

40

45

50

55

60

65

4

Preferably the method further comprises the step of not
enabling interrupts at the operating system in respect of file
descriptors on which the operations represented by the sets of
parameters stored at the data structure are operations to add or
modify a file descriptor managed by the user-level network
stack.

According to a third aspect of the present invention there is
provided a data processing system comprising: a plurality of
applications; an operating system having a kernel and an [/O
event notification mechanism operable to maintain a plurality
of I/O event notification objects each handling a set of file
descriptors associated with one or more I/O resources; a data
structure operable to store parameters of application-level
configuration calls, each set of parameters representing an
operation on the set of file descriptors handled by the /O
event notification object to which the respective configuration
call is directed; and a user-level interface configured to inter-
cept a plurality of configuration calls from an application to
the I/O event notification mechanism for configuring an I/O
event notification object and store parameters of the configu-
ration calls at the data structure; wherein the user-level inter-
face is configured to, on a predetermined criterion being met,
cause the plurality of configuration calls to be effected by
passing at least part of the data structure into the kernel
context and invoking a system call to the kernel.

According to a second aspect of the present invention there
is provided a method for processing a blocking system call at
adata processing system comprising an operating system that
supports kernel and user-level contexts, the method compris-
ing: intercepting a blocking system call from an entity run-
ning a kernel or user-level context; and repeatedly invoking
the system call in non-blocking mode until one of the follow-
ing conditions is satisfied: a non-blocking system call returns
a value; or a first predetermined time period expires; and on
one of the conditions being satisfied, returning to the entity a
response to its blocking system call comprising a value
returned by a non-blocking system call or a notification that
the first predetermined time period expired.

Preferably the method further comprises, on one of the
conditions being satisfied, enabling interrupts for the entity
on the entity next becoming blocked.

Preferably the first predetermined time period is a timeout
of'the entity indicating the maximum length of time before the
blocking call is to return.

Preferably the step of repeatedly invoking the system call
in non-blocking mode comprises: repeatedly invoking the
system call in non-blocking mode for no longer than a maxi-
mum length of time expressed by a second predetermined
time period; and if the second predetermined time period
expires: invoking the system call in blocking mode; and

enabling interrupts for the entity.

Preferably each non-blocking system call is invoked with a
timeout parameter of zero.

Suitably the intercepting step is performed in the kernel
context. Alternatively, the intercepting step is performed at a
user-level interface, the user-level interface: replacing the
blocking system call with a new system call; and causing, by
means of the new system call, the step of repeatedly invoking
the system call to be performed in the kernel context.

Preferably the data processing system comprises a plural-
ity of CPU cores.

Preferably the step of repeatedly invoking the system call
in non-blocking mode further comprises not enabling inter-
rupts for the entity whilst the system call is being repeatedly
invoked in non-blocking mode. Preferably the step of repeat-
edly invoking the system call in non-blocking mode further



US 9,384,071 B2

5

comprises not enabling interrupts for the entity in respect of
the non-blocking system calls.

Suitably the operating system is Linux and the blocking
system call is one of epoll( ), select( ), poll( ), read( ),
write( ), send( ), recv( ), accept( ) and futex( ).

DESCRIPTION OF THE DRAWINGS

The present invention will now be described by way of
example with reference to the accompanying drawings, in
which:

FIG. 1 is a schematic diagram of a data processing system
of'a conventional data processing system.

FIG. 2 is a schematic diagram of a data processing system
configured in accordance with the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

The following description is presented to enable any per-
son skilled in the art to make and use the invention, and is
provided in the context of a particular application. Various
modifications to the disclosed embodiments will be readily
apparent to those skilled in the art.

The general principles defined herein may be applied to
other embodiments and applications without departing from
the spirit and scope of the present invention. Thus, the present
invention is not intended to be limited to the embodiments
shown, but is to be accorded the widest scope consistent with
the principles and features disclosed herein.

The present invention is for use at a data processing system
having an operating system that provides an 1/O event notifi-
cation mechanism at its kernel and that is operable to support
a plurality of user-level applications. A data processing sys-
tem could be a server, personal computer, network switch, or
any other kind of computing device having a baseboard, one
ormore CPU cores, a memory and a set of /O resources. The
operating system could be any operating system that provides
an 1/O event notification mechanism configurable by user-
level applications by means of a system call. For example, the
operating system could be Linux, FreeBSD, Solaris, or Win-
dows.

According to a first aspect of the present invention there is
provided a method for improving the effective performance
of an I/O event notification mechanism operable to manage
1/0 event notification objects handling a plurality of file
descriptors. In particular, the first aspect of the present inven-
tion is advantageous if each file descriptor entry of an I/O
event notification object must be individually configured by
means of a system calls from the respective user-level appli-
cation to the I/O event notification mechanism.

A schematic diagram of a conventional data processing
system is shown in FIG. 1. Data processing system 100 com-
prises an operating system 101 that provides an /O event
notification mechanism 104 in the kernel context through
which I/O event notification objects 105 and 106 may be
managed. The operating system supports applications 102
and 103 at user-level 107. In this example, the operating
system is Linux, the /O event notification mechanism is
epoll, and the I/O event notification objects are epoll
instances.

In the conventional data processing system of FIG. 1, the
file descriptors of an epoll instance 105 are configured as
follows. Application 102 makes a set of epoll_ctl( ) system
calls 108, each epoll_ctl( ) call being a request to add a
descriptor to the set of descriptors handled by its epoll
instance 105, to modify the event type monitored in respect of
adescriptor of the set, or to delete a descriptor of the set. Each

10

15

20

25

30

35

40

45

50

55

60

65

6

epoll_ctl( ) call specifies the file descriptor to which it corre-
sponds and identifies the event type that the epoll instance is
to monitor for that file descriptor.

Each system call causes a context switch from the user-
level context 107 into the kernel context 109 so as to pass the
parameters of the call from the application to epoll. The five
epoll_ctl( ) calls shown in FIG. 1 therefore involve five con-
text switches to and from the user-level context and the kernel
context. Once the application has configured the set of
descriptors of the epoll instance 105, the application makes an
epoll_wait( ) system call so as to cause epoll to start waiting
for the identified event types of each of the set of descriptors.
To configure and start an epoll instance therefore requires six
context switches in total to and from user-level into the kernel.

FIG. 2 shows a data processing system configured in accor-
dance with the present invention. Data processing system 200
comprises an operating system 201, that provides an I/O event
notification mechanism 204 in the kernel context through
which /O event notification objects 205 and 206 may be
managed. The operating system supports applications 202
and 203 at user-level 207. The data processing system further
comprises a user-level interface 210 for intercepting system
calls from the applications to the I/O event notification
mechanism, and a kernel library 213 for directly calling rou-
tines of the 1/O event notification mechanism. Kernel library
213 operates in the context of the kernel 209.

The operation of the present invention will now be
described by example. In this example the operating system is
Linux, the I/O event notification mechanism is epoll, and the
1/O event notification objects are epoll instances. In order to
configure the descriptors handled by its epoll instance 205, an
application 202 makes the same set of epoll_ctl() system calls
208 as in FIG. 1. The present invention does not therefore
require any modification to applications which can continue
to make the same calls to epoll in the same way. However, in
FIG. 2, each epoll_ctl( ) call is intercepted by the user-level
interface 210 so that the calls do not cause a switch into the
kernel context. For example, in Linux, the user-level interface
could be configured to intercept calls using the LD_PRE-
LOAD mechanism.

On intercepting each epoll_ctl( ) call, the user-level inter-
face stores the parameters of the call at a data structure 211
that may or may not be provided at user-level interface 210
but which can be written to in the user-level context without
the need for a context switch into the kernel. Processing
returns to the application 202 after each call is intercepted
without any system calls being invoked. In this manner, a set
of parameters for each epoll_ctl( ) call made by the applica-
tion is stored at the data structure. There is no limitation as to
how the parameters can be stored at the data structure pro-
vided that sufficient information is retained to allow the
epoll_ctl() calls to be recreated: copies ofthe epoll_ctl() calls
themselves could be stored, copies of the significant param-
eters of the epoll_ctl( ) calls could be stored, or the data
structure could hold a representation of the epoll_ctl( ) callsor
their significant parameters.

At a later time, when several epoll_ctl( ) calls directed to
epoll instance 205 may have been intercepted and their
parameters stored at the data structure, the user-level interface
makes a single system call 212 so as to pass the aggregated
parameters of the stored epoll_ctl( ) calls to the kernel library
213. This system call 212 will be termed epoll_ctl_many( ).
The system call may pass the parameters to the kernel library
by passing a reference (such as a file descriptor) to the data
structure or its relevant parts, passing a copy of at least part of
the data structure, or passing some other representation of the
information content of the data structure.



US 9,384,071 B2

7

Once processing has passed to the kernel library, the kernel
library calls epoll_ctl( ) 214 for each set of parameters stored
in the data structure so as to effect the epoll configuration
operations represented by the sets of parameters. Since the
kernel library operates within the kernel context these calls do
not involve a context switch from user-level into the kernel.
Thus, the present invention replaces multiple system calls
from the application with a single system call from the user-
level interface, reducing the number of context switches
between the kernel and user-level, and hence reducing CPU
overhead and improving system performance.

Each application may have multiple epoll instances and
there may be multiple applications; an operating system
might therefore maintain many epoll instances. Preferably the
data structure can store the parameters of epoll_ctl( ) calls that
relate to different epoll instances. However, the user-level
interface is preferably configured to aggregate only those
configuration calls that relate to a particular epoll instance.
This is readily achieved by grouping parameters in the data
structure according to the epoll instance to which they relate.

The user-level interface is preferably configured to defer
making the system call epoll_ctl_many( ) until the applica-
tion calls epoll_wait( ). This can be achieved by arranging that
the user-level interface additionally intercepts epoll_wait( )
calls from the application to epoll. Once an epoll_wait( ) call
has been intercepted, the user-interface can be configured to
handle the call in one of two ways.

Firstly, the user-level interface can be configured to make
the epoll_ctl_many( ) system call so as to cause the kernel
library to configure epoll instance 205 in accordance with the
epoll_ctl() calls that originated from the application, and then
to make either an epoll_wait( ) system call directly to epoll, or
a second system call to the kernel library so as to cause the
kernel library to call epoll_wait( ).

Secondly and preferably, the user-level interface is config-
ured to make a single epoll_ctl_and _wait( ) call to the kernel
library so as to cause the kernel library to configure epoll
instance 205 in accordance with the epoll_ctl( ) calls that
originated from the application and then call epoll_wait( ).
This is preferable because it allows an epoll instance to be
configured and started with one fewer context switch, further
reducing the CPU overhead associated with managing 1/O
event notification objects.

It can be useful to arrange that in the absence of an epoll_
wait( ) call from the application, the user-interface makes the
epoll_ctl_many( ) call when a timer reaches a predetermined
value or when the storage space required at the data structure
for storing the sets of parameters exceeds a predetermined
size. This can avoid having a significant number of epoll
configuration operations represented by the sets of param-
eters becoming backed-up at the data structure.

Often, a configuration call to epoll from an application will
override or cancel the effect of an earlier call associated with
the same file descriptor. Further efficiency gains can be made
by combining those epoll configuration operations repre-
sented by the sets of parameters at the data structure that are
associated with the same file descriptor. The kernel library is
configured to call epoll_ctl( ) using the parameters of the
combined operation for any descriptors in respect of which
there are multiple operations represented in the data structure.
This is preferably performed at the user-level interface but
could alternatively be performed at the kernel library prior to
the kernel library calling epoll_ctl( ) for each set of param-
eters stored at the data structure for epoll instance 205. The
following table shows how epoll configuration operations can
be combined:

10

15

20

25

30

35

40

45

50

55

60

65

8

1st operation 2nd operation Combined operation

EPOLL_CTL_ADD
EPOLL_CTL_ADD
EPOLL_CTL_MOD
EPOLL_CTL_MOD
EPOLL_CTL_DEL

EPOLL_CTL_MOD
EPOLL_CTL_DEL
EPOLL_CTL_MOD
EPOLL_CTL_DEL
EPOLL_CTL_ADD

EPOLL_CTL_ADD
cancel
EPOLL_CTL_MOD
EPOLL_CTL_DEL
EPOLL_CTL_MOD
or cancel

Thus, an operation to add a new file descriptor to an epoll
instance followed by an operation to modify the event to
which that descriptor relates can be expressed as a single
operation to add a new file descriptor having the modified
event. Successive operations to add and then delete the same
descriptor cancel one another out, although successive opera-
tions to delete and then add the same descriptor may not
cancel one another out because the operation to add a descrip-
tor may be associated with a different event type to the opera-
tion to delete that descriptor. Successive operations to modify
the event to which a descriptor relates can generally be
expressed by the last modify operation.

The present application finds particular application in data
processing systems that include a user-level network stack
configured to perform protocol processing of data received
over or to be transmitted over a network interface device.
Such user-level stacks typically handle large numbers of file
descriptors that relate to receive and transmit queues of the
data processing system. Furthermore, since receive and trans-
mit queues can be rapidly re-configured as connections are
established and taken down, it is advantageous for the /O
event notification mechanisms to be as efficient as possible.
This is of particular concern in data servers that might make
thousands of new connections a second.

In data processing systems having a user-level network
stack, the user-level interface 210 is preferably provided at the
user-level network stack. There can be multiple user-level
interfaces per data processing system, each being part of a
different user-level network stack.

According to a second aspect of the present invention there
is provided a method for reducing the latency and jitter of an
1/O event notification mechanism operable to manage 1/O
event notification objects handling a plurality of file descrip-
tors. In particular, the second aspect of the present invention
is advantageous in data processing systems having multiple
CPU cores.

Conventionally, when an 1/O event notification object is
invoked by a system call, the object blocks until new 1/O
events are available for one of the descriptors handled by the
1/O event notification object. For example, epoll_wait( ) is
generally invoked by an application for an epoll instance such
that the routine blocks until I/O events are available for one of
the descriptors handled by that instance.

The second aspect of the present invention provides a way
in which such blocking calls to an /O event notification
object are replaced by a busy-wait loop that repeatedly makes
non-blocking calls to an I/O event notification object with a
timeout of zero such that the object returns immediately after
it is invoked. This will be described with reference to FIG. 2
by way of an example in which the operating system is Linux,
the I/O event notification mechanism is epoll, and the I/O
event notification objects are epoll instances.

Consider the preferred embodiment described above in
relation to FIG. 2 and the first aspect of the present invention
in which kernel library 213 calls epoll_wait( ) on behalf of
application 202. Instead of invoking epoll_wait( ) by means
of'a conventional blocking call, the kernel library performs a
busy-wait loop that repeatedly invokes epoll_wait( ) in non-



US 9,384,071 B2

9

blocking mode with a timeout of zero. The loop is performed
until /O events become available for one of the descriptors
handled by the respective epoll instance 205, or a timeout
specified in the busy-wait loop expires. If a non-blocking call
returns an I/O event, the busy-wait loop exits and an indica-
tion ofthe /O event is returned to the application. The timeout
specified in the busy-wait loop expresses the maximum time
that the busy-wait loop should spin for and is preferably
user-configurable. If the busy-wait loop timeout expires then
preferably ablocking system call is invoked and interrupts are
enabled for the application.

There may additionally be a timeout specified by applica-
tion 202 which specifies the maximum time before the block-
ing system call it attempts to invoke should return. The appli-
cation timeout is specified by the application and typically
forms a standard part of the system call API. The busy-wait
loop is configured to exit on this timeout being reached and an
indication is returned to the application that its timeout
expired.

The busy-wait loop could be configured as follows:

int epoll__busy__ wait(epoll__set, events, max__events, timeout)

do {
rc = epoll__wait(epoll__set, events, max__events, O /*
nonblocking */);
if{ret=0)
return rc;
if{ timeout__exceeded(timeout) )
return O;
} while( ! timeout__exceeded(busy_ wait_timeout) );
/* Subtract time spent busy-waiting from timeout. */
timeout = timeout — busy__wait_ timeout;
return epoll_wait(epoll__set, events, max__events, timeout);

By repeatedly invoking epoll_wait( ) in a non-blocking
mode, the latency experienced by the entity making the sys-
tem call (in this case the kernel library, but more generally an
application) is reduced because the thread that invoked epoll_
wait( ) does not need to be woken when an I/O event becomes
available—the thread is active since it invoked epoll_wait( )
with a zero timeout and is waiting for an immediate response.
Furthermore, the inventors have recognised that in multi-core
data processing systems, because the CPU core on which
epoll_wait() is running is kept busy by the looping code, jitter
in the system is also reduced. This is because the task sched-
uler of the operating system is likely to schedule threads to
other less busy cores in preference to the CPU core consumed
by the code loop. It is of particular importance to minimise
jitter in data processing systems having user-level network
stacks operating over high bandwidth network interface
devices, such as 10 GigE and 40 GigE devices.

The busy-wait loop can be embodied in a routine provided
by the kernel library and invoked by a system call from the
user-level interface (e.g. epoll_ctl_many( ) orepoll_ctl_and _
wait( )). Thus, in preference to invoking epoll_wait( ) in the
conventional manner, the kernel library is configured to
instead repeatedly invoke epoll_wait( ) in a non-blocking
mode in accordance with the second aspect of the present
invention. Alternatively, the busy-wait loop can replace the
standard kernel implementation of epoll_wait( ) such that the
busy-wait loop is performed when epoll_wait( ) is called.
Least preferably, the busy-wait loop can be implemented at
user-level (for example, at the user-level interface 210). How-
ever, this causes a single blocking system call to epoll_
wait( ) to be converted into multiple non-blocking system
calls to epoll_wait( ) and significantly increases latency.

10

15

20

25

30

35

40

45

50

55

60

65

10

The second aspect of the present invention is not limited to
use with [/O event notification mechanisms and is equally
applicable to all system calls in an operating system that
block. For example, on Linux other system calls that can be
invoked according to the second aspect of the present inven-
tion include select( ), poll( ), read( ), write( ), send( ), recv(),
accept( ) and futex( ).

In a most preferred embodiment of the present invention,
the first and second aspects of the invention are implemented
(advantageously in their preferred forms) at a user-level net-
work stack, such as the OpenOnload stack. Thus, user-level
interface 210 is provided at the user-level network stack. The
kernel library 213 may be installed into the operating system
on installing the user-level stack. For example, the user-level
stack may form part of a software package for use with a
network interface device coupled to the data processing sys-
tem, and the kernel library could form part of that software
package. The kernel library could be provided at a driver for
such a network interface device.

Preferably a user-level interface at a user-level network
stack is configured to intercept only those I/O event notifica-
tion configuration calls that relate to descriptors handled by
the user-level network stack.

Itis generally desirable to avoid interrupting an application
whilst it is running so as to avoid unwanted CPU load and
jitter. This is particularly true when an application is trans-
mitting and/or receiving data over a network interface device
(typically provided as a peripheral card in a data processing
system, e.g. a PCle NIC). It is therefore desirable that user-
level network stacks are configured so as to avoid interrupting
an application communicating by means of the stack whilst
that application is running, but to enable interrupts when the
application blocks whilst waiting for network I/O. Interrupts
are required when an application is blocked in order to wake
the application in a timely manner and handle network events.

With respect to the present invention, interrupts are there-
fore preferably handled in the following ways. When the
user-level interface intercepts an epoll_ctl( ) call, the user-
level interface does not cause interrupts to be enabled for the
application in respect of the epoll instance. If necessary, the
user-level interface is configured to prevent interrupts being
enabled for the application in respect of the epoll instance. In
the case in which the user-level interface is at a user-level
network stack, the application does not cause or prevents
interrupts being enabled for the application in respect of the
epoll instance for file descriptors handled by the user-level
network stack.

Preferably, interrupts are not enabled for an application in
respect of the epoll instance while a busy-wait loop is run-
ning. For example, in the preferred embodiments, when a
system call is invoked to cause the kernel library to start an
epoll instance, the kernel library does not enable (or prevents
from being enabled) interrupts for the respective application
whilst the busy-wait loop with which the I/O events are moni-
tored is running. More generally, it is preferable that a data
processing system is configured to not enable (or prevent
interrupts being enabled) for the respective application when
epoll_wait( ) is invoked as a non-blocking call. This is most
preferable in respect of epoll instances handling file descrip-
tors managed by a user-level network stack. Interrupts are
preferably then enabled when the busy-wait timeout is
exceeded and the application goes on to block. Interrupts are
preferably also enabled when the epoll instance receives an
event and the application goes on to block.



US 9,384,071 B2

11

An exemplary implementation of a unified system call
provided by the kernel library for configuring and starting an
epoll instance is set out in pseudo “C” code in Annex A. This
call would be invoked by a user-level interface so as to con-
figure an epoll instance in accordance with the deferred
operations stored at the data structure, start the epoll instance
using a busy-wait loop and supress interrupts in the manner
described above.

The present invention has been described herein with ref-
erence to the epoll I/O event notification mechanism provided
in the Linux operating system. However, the present inven-
tion is not limited to a particular operating system and equally
finds application in other operating systems, such as FreeBSD
(in which the epoll equivalent is kqueue) and Solaris (which
provides an analogous event completion API). The present
invention applies equally to both non-virtualised and virtua-
lised instances of operating systems.

The applicant hereby discloses in isolation each individual
feature described herein and any combination of two or more
such features, to the extent that such features or combinations
are capable of being carried out based on the present specifi-
cation as a whole in the light of the common general knowl-
edge ofa person skilled in the art, irrespective of whether such
features or combinations of features solve any problems dis-
closed herein, and without limitation to the scope of the
claims. The applicant indicates that aspects of the present
invention may consist of any such individual feature or com-
bination of features. In view of the foregoing description it
will be evident to a person skilled in the art that various
modifications may be made within the scope of the invention.

ANNEX A

An exemplary implementation of a unified system call
provided by the kernel library for configuring and starting an
epoll instance.

int onload__epoll__wait(epoll__set, events, max__events, timeout,
busy__wait_ timeout, deferred__epoll__ctl__ops)
{

/* Prevent interrupts from being enabled when the real epoll_ctl( )
and
* epoll__wait( ) calls are invoked.
*/
onload__suppress__interrupts( );
/* Invoke any deferred epoll__ctl( ) operations with interrupts
* suppressed.
*/
for__each(deferred__epoll_ctl_ops)
epoll__ctl(epoll__set, op, fd, event);
/* Invoke real epoll__wait( ) with interrupts suppressed. Busy-wait if
* configured to do so.
*/
do {
rc = epoll__wait(epoll__set, events, max__events, O /* nonblocking
*);
if(rc!=0)
return rc;
if( timeout__exceeded(timeout) )
return 0;
} while( ! timeout__exceeded(busy__wait__timeout) );
/* Subtract time spent busy-waiting from timeout. */
timeout = timeout — busy_ wait_timeout;
/* Enable interrupts for each stack associated with the set of
* file descriptors in the epoll set.
*/
onload__enable__interrupts( );
return epoll_wait(epoll__set, events, max__events, timeout);

10

15

20

25

30

35

40

45

50

55

o

5

12

We claim:

1. A method for managing I/O event notifications in a data
processing system, the data processing system comprising a
plurality of applications and an operating system having a
kernel and an I/O event notification mechanism operable to
maintain a plurality of I/O event notification objects each
handling a set of file descriptors associated with one or more
1/O resources, the method comprising:

for each of a plurality of application-level configuration

calls:

a user-level interface intercepting a configuration call
from an application to the I/O event notification
mechanism for configuring an I/O event notification
object; and

storing a set of parameters of the configuration call at a
data structure, each set of parameters representing an
operation on the set of file descriptors handled by the
1/0O event notification object;

intercepting at the user-level interface a wait call from
the application to the I/O event notification mecha-
nism for causing the 1/0 event notification object to
wait for an event associated with one or more of'its file
descriptors;

subsequently, on a predetermined criterion being met, the

user-level interface causing the plurality of configura-

tion calls to be effected by making a single system call
from the user level to the kernel,

wherein the predetermined criterion is reception of a wait

call from the application at the user-level interface, and

wherein the predetermined criterion is additionally met
if no wait call is received at the user-level interface but
one of the following occurs:

a predetermined time period expires; or

storage space required at the data structure for storing
the sets of parameters representing operations to be
performed on the set of file descriptors handled by the
1/0 event notification object exceeds a predetermined
size.

2. A method as claimed in claim 1, wherein the step of
causing the plurality of configuration calls to be effected
comprises:

the user-level interface making the single system call to the

kernel so as to pass the data structure to a kernel library;

and

the kernel library invoking a configuration routine of the

1/0 event notification mechanism for each set of param-

eters stored in the data structure so as to configure the [/O

event notification object in accordance with the configu-
ration calls.

3. A data processing system comprising a CPU and
memory,

the CPU having a plurality of applications executing

thereon;

the CPU further having an operating system executing

thereon, the operating system having a kernel and an /O

event notification mechanism operable to maintain a

plurality of I/O event notification objects each handling

a set of file descriptors associated with one or more 1/0

resources;

the CPU further configured to store in a data structure

parameters of application-level configuration calls, each
set of parameters representing an operation on the set of
file descriptors handled by the I/O event notification
object to which the respective configuration call is
directed; and

the CPU having a user-level interface executing thereon,

the user-level interface configured to intercept a plural-

ity of configuration calls from an application to the /O



US 9,384,071 B2

13

event notification mechanism for configuring an 1/0
event notification object and store parameters of the
configuration calls at the data structure,

the user-level interface being further configured to inter-
cept a wait call from the application to the /O event
notification mechanism for causing the I/O event notifi-
cation object to wait for an event associated with one or
more of its file descriptors;

wherein the user-level interface is configured to, on a pre-
determined criterion being met, cause the plurality of
configuration calls to be effected by passing at least part
of the data structure into the kernel context and making
a system call from the user level to the kernel,

wherein the predetermined criterion is the reception of a
wait call from the application at the user-level interface,
and wherein the predetermined criterion is additionally
met if no wait call is received at the user-level interface
but one of the following occurs:

a predetermined time period expires; or

the storage space required at the data structure for stor-
ing the sets of parameters representing operations to
be performed on the set of file descriptors handled by
the I/O event notification object exceeds a predeter-
mined size.

4. A method for managing I/O event notifications in a data
processing system, the data processing system comprising a
plurality of applications and an operating system having a
kernel and an I/O event notification mechanism operable to
maintain a plurality of I/O event notification objects each
handling a set of file descriptors associated with one or more
1/O resources, the method comprising:

a user-level interface receiving a plurality of application-
level configuration calls from one or more applications
toward the I/O event notification mechanism, each of the
configuration calls including a respective set of param-
eters representing an operation on a set of file descriptors
handled by an I/O event notification object of the 1/O
event notification mechanism of the operating system;

the user-level interface receiving a wait call sent from an
application toward the /O event notification mechanism
for causing the I/O event notification object to wait for an
event associated with one or more of its file descriptors;

in response to receipt of each particular one of the appli-
cation-level configuration calls in the plurality of appli-
cation-level configuration calls, the user-level interface
storing at a data structure in user address space the set of
parameters of the particular configuration call;

subsequently, on a predetermined criterion being met, the
user-level interface making a single system call from the
user level to the kernel so as to pass the data structure to
a kernel module; and

the kernel module invoking a configuration routine of the
1/O event notification mechanism for the sets of param-
eters stored in the data structure so as to configure the [/O
event notification object in accordance with the configu-
ration calls,

wherein the predetermined criterion is the reception of a
wait call from the application at the user-level interface
and wherein the predetermined criterion is additionally
met if no wait call is received at the user-level interface
but one of the following occurs:

a predetermined time period expires; or

storage space required at the data structure for storing the
sets of parameters representing operations to be per-
formed on the set of file descriptors handled by the 1/0
event notification object exceeds a predetermined size.

10

15

20

25

30

35

40

45

50

55

60

65

14

5. A method as claimed in claim 4, further comprising,
subsequent to each receiving step, returning processing to the
application that made the respective configuration call.

6. A method as claimed in claim 4, wherein the receiving
and storing steps are performed without invoking any kernel
level processes.

7. A method as claimed in claim 4, wherein the I/O event
notification mechanism is configured such that each file
descriptor of an 1/O event notification object is individually
configurable by means of a configuration call from the appli-
cation to the I/O event notification mechanism.

8. A method as claimed in claim 4, wherein the data struc-
ture is passed to the kernel module by one of: passing a
reference to the data structure, passing a copy of at least part
of the data structure, and passing a representation of the data
structure into the kernel context.

9. A method as claimed in claim 4, wherein the I/O event
notification mechanism is epoll and the configuration routine
is epoll_ctl( ).

10. A method as claimed in claim 4, wherein each operation
on the set of file descriptors held by the I/O event notification
object is an operation to add a file descriptor to the set, modify
an event type to be monitored by the I/O event notification
object in respect of a file descriptor of the set, or delete a file
descriptor from the set of file descriptors.

11. A method as claimed in claim 4, wherein more than one
of the sets of parameters stored at the data structure are
associated with the same file descriptor of the I/O event noti-
fication object, further comprising:

combining into a single operation those operations repre-

sented by the more than one set of parameters; and
replacing the operations represented by those sets of
parameters with the single operation.

12. A method as claimed in claim 11, wherein the opera-
tions represented by the more than one set of parameters
stored at the data structure cancel each other out, and wherein
the single operation is do nothing.

13. A method as claimed in claim 11, wherein the combin-
ing step is performed by the user-level interface or the kernel
module.

14. A method as claimed in claim 4, further comprising,
subsequent to the step of making a single system call, the
user-level interface causing the /O event notification object
to wait for an event associated with one or more of the file
descriptors of the I/O event notification object by means of a
subsequent system call to the kernel.

15. A method as claimed in claim 14, wherein the subse-
quent system call is to the kernel module and the step of
causing the I/O event notification object to wait for an event
comprises invoking a wait routine of the /O event notification
mechanism.

16. A method as claimed in claim 15, wherein the I/O event
notification mechanism is epoll and the wait routine is epoll_
wait( ) or epoll_pwait( ).

17. A method as claimed in claim 14, wherein the single
and subsequent system calls are made by means of a single
unified system call from the user-level interface to the kernel.

18. A method as claimed in claim 4, wherein the operating
system comprises a plurality of I/O event notification objects
and the user-level interface relates to a single /O event noti-
fication object.

19. A method as claimed in claim 4, wherein the I/O event
notification object handles a set of file descriptors corre-
sponding to a network interface device.

20. A method as claimed in claim 19, wherein the file
descriptors correspond to receive or transmit buffers.



US 9,384,071 B2

15

21. A method as claimed in claim 4, wherein the user-level
interface is provided at a user-level network stack.

22. A method as claimed in claim 4, further comprising the
step of not enabling interrupts at the operating system in
respect of file descriptors on which the operations represented
by the sets of parameters stored at the data structure are
operations to add or modify a file descriptor managed by the
user-level network stack.

23. A data processing system comprising a CPU and
memory, the CPU having a plurality of applications executing
thereon;

the CPU further having an operating system executing

thereon, the operating system having a kernel and an /O
event notification mechanism operable to maintain a
plurality of /O event notification objects each handling
a set of file descriptors associated with one or more 1/0
resources;

the CPU having a user-level interface executing thereon,

the user-level interface configured to receive a plurality
ofapplication-level configuration calls from one or more
applications toward the 1/O event notification mecha-
nism, each of the configuration calls including a respec-
tive set of parameters representing an operation on a set
of file descriptors handled by an I/O event notification
object of the I/O event notification mechanism of the
operating system;

the user-level interface further configured to store at a data

structure in user address space the set of parameters of

10

15

25

16

each of the configuration calls in the plurality of appli-
cation-level configuration calls;

the user-level interface being further configured to receive
a wait call sent from an application toward the I/O event
notification mechanism for causing the I/O event notifi-
cation objection to wait for an event associated with one
or more of its file descriptors;

the user-level interface further configured to, on a prede-
termined criterion being met, make a single system call
from the user level to the kernel so as to pass to a kernel
module the data structure having stored therein the sets
of parameters of each of the configuration calls in the
plurality of application-level configuration calls; and

the kernel module configured to invoke a configuration
routine of the I/O event notification mechanism for the
sets of parameters stored in the data structure so as to
configure the I/O event notification object in accordance
with the configuration calls,

wherein the predetermined criterion is the reception of a
wait call from the application at the user-level interface
and wherein the predetermined criterion is additionally
met if no wait call is received at the user-level interface
but one of the following occurs:

a predetermined time period expires; or

the storage space required at the data structure for storing
the sets of parameters representing operations to be per-
formed on the set of file descriptors handled by the 1/O
event notification object exceeds a predetermined size.

#* #* #* #* #*



